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Abstract 

This study examines the predictability of time series data derived from lip movements during 

speech using traditional statistical methods. The dataset was generated from a publicly available 

video, where x and y coordinates of 40 lip landmarks were extracted for each frame using Google’s 

MediaPipe Face Mesh technology. Comprising a total of 3,242 frames and 80 time series, the 

dataset was analyzed by applying ARIMA and SARIMA models with various parameter 

combinations. The lowest Mean Absolute Percentage Error (MAPE) achieved was 0.0994 for the 

ARIMA model and 0.1331 for the SARIMA model. The most successful parameter combinations 

for the ARIMA model were typically p=5, d=0, q=1, while for the SARIMA model, the parameters 

p=1, d=0, q=3, P=0, D=0, Q=1, s=25 demonstrated the best performance.  
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1. Introduction 

Humans rely on words to convey emotions and thoughts; however, facial expressions form the core of communication. 

These expressions, reflecting an individual’s thought processes, emotions, and experiences, reveal their unique identity 

(Ekman, 2003). As social beings, humans employ not only verbal communication but also nonverbal elements such as 

gestures, facial expressions, and body language (Mast, 2007). The human face is the primary domain where these 

nonverbal communication elements are most prominently observed. 

The face is an integrated structure composed of various subcomponents (eyes, eyebrows, nose, cheeks, and mouth). 

Among these, the mouth and its surrounding area serve as a central region for both speech production and the vivid 

expression of emotions. In particular, the lips are key elements that visually enhance the intensity and sincerity of 

expressions. This rich expressive capacity has laid the foundation for the development of modern facial recognition and 

tracking systems. With technological advancements, applications based on facial and lip analysis are increasingly 

integrated into daily life. Examples include facial recognition systems in smartphones, automatic tagging features on 

social media platforms, driver fatigue detection systems, and security applications. In healthcare, these technologies are 

utilized to enhance eye contact abilities in individuals with autism spectrum disorder, measure consumer reactions in 

marketing research, and support augmented reality applications. Given the significance of the human face, many new 

technologies and studies are actively being pursued. One prominent framework for researchers is the MediaPipe Face 

Mesh application (Lugaresi et al., 2019). The Face Mesh application is frequently preferred across various domains for its 

ability to automatically detect and track faces in images or videos (Adhikari et al., 2025; Aripin & Setiawan, 2024; Balaji & 

Sujatha, 2025; Jakhete & Kulkarni, 2024). Comparative studies have demonstrated its superiority over other methods. For 

instance, Jakhete and Kulkarni (2024) conducted a comprehensive study on emotion recognition through facial 

expressions, comparing various methods and datasets. They found that the MediaPipe Face Mesh model, capable of 

detecting 468 3D facial landmarks in real time, outperformed models like DLIB and OpenPose in terms of accuracy and 

speed. These technologies are employed in converting speech to text for individuals with hearing impairments, ensuring 

dubbing synchronization in film and video content, and detecting speech content remotely in forensic science. However, 

a key challenge in facial analysis is the temporary occlusion of specific facial regions, particularly the lips. Occlusion by 

hands, hair, or other objects can lead to missing or corrupted movement data (W. Zhang et al., 2023). The human face is 

characterized by relatively stable positions and sizes of facial components, largely unaffected by environmental factors, 

which impose strong structural constraints. This is a critical aspect often overlooked by current methods when addressing 

occluded landmarks (Li et al., 2024). Time series analysis methods have shown promising results in addressing such 

challenges. Time series analysis is a statistical approach used to examine patterns, trends, and variations in temporally 

observed data (Shumway & Stoffer, 2025). It is widely applied in fields such as finance (Lu & Xu, 2024; Sui et al., 2024), 

healthcare (Kong et al., 2024), energy (Gulay et al., 2024), and meteorology (Mishra et al., 2024; Ansari & Alam, 2024). 

In this study, the human face in videos is detected using Face Mesh technology, with a focus on the lip region. The x and 

y coordinates of 40 distinct lip landmarks (resulting in 80-dimensional data) identified through Face Mesh are treated as 

time series across the video duration. The primary objective of the research is to apply ARIMA and SARIMA methods with 

different parameter combinations to these coordinate movements, compare the resulting MAPE values, and determine 

the most optimal forecasting model. The study’s findings will contribute to predicting missing or corrupted lip coordinates 

in cases of temporary occlusion, ensuring the continuity of facial movement analysis. The second section of this study 

presents a literature review. The third section details the proposed methodology. The fourth section evaluates the findings 

under the results and discussion section. The final section provides the conclusions. 
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2. Literature Review 

Time series forecasting models can be categorized as univariate and multivariate. Univariate models include AR (Ding et 

al., 2010), MA (Tsay, 2005), ARMA (Brockwell & Davis, 2016), and ARIMA (Box et al., 2015), while SARIMA (Rosychuk et al., 

2016) is prominent for seasonal data, and SARIMAX (Elamin & Fukushige, 2018) is used when exogenous variables are 

incorporated. For multivariate data, models such as VAR (Zivot & Wang, 2006), VARMA (Tsay, 2013), and VARMAX (Casals 

et al., 2012) are preferred. For short-term forecasting, methods like SES (X. Zhang et al., 2020) and Holt-Winters (Jiang et 

al., 2020) offer effective solutions. Various time series models have been employed for forecasting. ARIMA models, 

characterized by three parameters (p, d, q), are widely applied across domains such as the furniture industry (Yucesan et 

al., 2018), healthcare (Kadri et al., 2014; Wei et al., 2016; Xu et al., 2016), finance (Zhang et al., 2016), energy (Yuan et al., 

2016; Cadenas et al., 2016), food industry (Tripathi et al., 2014), transportation (Mete et al., 2022; Serin et al., 2021), 

aquaculture (Siddique et al., 2025), climate (Wahyudi & Febriani, 2024). Variants such as vector-ARIMA (Mai et al., 2015), 

ARMA (Aboagye-Sarfo et al., 2015), SARIMA (Butler et al., 2016; Rosychuk et al., 2016), and MSARIMA (Aroua & Abdul-

Nour, 2015) are also frequently utilized by researchers. 

Siddique et al. (2025) analyzed air temperature and precipitation data from 2011–2022 in Mymensingh, Bangladesh, 

using ARIMA models to forecast trends for 2023–2030. Their aim was to predict the impact of climate variables on 

aquaculture and provide data-driven insights for planning. Data sourced from NASA was validated using Bangladesh 

Meteorological Department records. The optimal models were ARIMA (2,1,2) for temperature and ARIMA (3,0,2) for 

precipitation, selected based on statistical metrics such as BIC, RMSE, and MAPE, supported by ACF and PACF graphs. 

The forecasts indicate a significant temperature increase and precipitation decrease in Mymensingh in the coming years. 

Kong et al. (2024) aimed to predict missing values in healthcare data in a time-aware manner. They used Truncated SVD 

to compress data, reducing redundancy and noise, followed by ARIMA for missing value prediction. Their approach 

improved accuracy by considering temporal dimensions and capturing essential data patterns, with experiments on the 

WISDM dataset demonstrating its effectiveness and efficiency. 

Wahyudi and Febriani (2024) compared SARIMA and SARIMAX models to predict particulate organic carbon (POC) levels 

in Indonesia’s Sunda Shelf waters using MODIS data from 2002–2022. The models were SARIMA (3,1,3) x (2,0,0,60) and 

SARIMAX (3,1,3) x (2,0,0,60), with SARIMAX incorporating exogenous variables like sea surface temperature, chlorophyll-

a, and salinity. Although SARIMAX had a lower AIC, validation metrics (MAPE, RMSE, correlation coefficient) showed 

SARIMA’s superior performance. Forecasts suggest POC levels will fluctuate seasonally between 108.3–135.9 mg/m³ from 

2022–2030, peaking during the northwest monsoon season. 

Kumar et al. (2024) compared Holt-Winters Exponential Smoothing (HWES) and ARIMA models to enhance demand 

forecasting and dynamic pricing strategies. Tested on real-world data, the models were evaluated for reducing lost sales 

and optimizing revenue under uncertain market conditions. Their dynamic pricing model, designed for limited sales 

seasons, also analyzed lost sales patterns. The findings indicate ARIMA’s superior performance over HWES in volatile 

market conditions. 

3. Material and Method 

Dataset 

The dataset used in this study was created from a publicly available YouTube video, with its characteristics detailed in 

Table 1, utilizing MediaPipe Face Mesh technology (Lugaresi et al., 2019). 
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Table 1. Basic Information About the Video Used for the Dataset 

 Video File Info 

Duration 129.68 saniye (~2 dakika 10 saniye) 

Frame Rate 25 fps 

Total Frame Count 3242 

 

MediaPipe operates in real time, detecting 468 three-dimensional (3D) landmarks on a face. To precisely track lip 

movements during speech, specific lip landmarks defined by MediaPipe were selected. These landmarks were divided 

into two groups: the outer lip contour and the inner lip contour, each comprising 20 points. The x and y coordinates of 

each lip landmark were extracted, forming a dataset with 3,242 rows (corresponding to the total number of video frames) 

and 83 columns (including id, time, frame, and x and y coordinate values for the 40 landmarks). 

ARIMA and SARIMA Models 

The AR(p) and MA(q) models applied to forecasting are represented as in Equations (1) and (2), respectively (Yule, 1926; 

Wold, 1938).  

𝑌𝑡 = ∑ 𝑎𝑖
𝑝
𝑖=1 𝑌𝑡−𝑖 + 𝜀𝑡                   (1) 

𝑌𝑡 = 𝜀𝑡 +∑ 𝑏𝑗
𝑞
𝑗=1 𝜀𝑡−𝑗                     (2) 

where ia are non-seasonal AR parameters, t is zero mean Gaussian noise and 
jb are non-seasonal MA 

parameters. 

The ARMA (p, q) model combines p autoregressive terms and q moving average terms, as shown in Equation 

(3): 

𝑌𝑡 = 𝑐 + 𝑎1𝑌𝑡−1 +⋯+ 𝑎𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝑏1𝜀𝑡−1 +⋯+ 𝑏𝑞𝜀𝑡−𝑞                                             (3) 

In cases of non-stationary data, differencing is required to achieve stationarity, as in the ARIMA model (Box 

et al., 2015).  

Performance Measurements 

The forecasting results were evaluated using the Mean Absolute Percentage Error (MAPE), as defined in 

Equation (4). 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝑌𝑡−�̂�𝑡|

𝑌𝑡

𝑛
𝑡=1 ) ∗ 100                                                                    (4) 

4. Experimental Results 

In this study, the ARIMA method was applied with different combinations to each of the 80 time series (40 x-coordinates 

and 40 y-coordinates) derived from the coordinates of 40 distinct lip landmarks. The combinations were determined by 

setting the hyperparameter ranges for p, d, and q as 0–9, 0–1, and 0–3, respectively, resulting in 80 different combinations 

per series, totaling 6,400 evaluations. 
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Figure 1. Best MAPE Value for Each Series 

 

Figure 1 displays the best MAPE values for each time series. In the figure, “x” markers (orange) represent the values 

obtained from the time series of y-coordinates of lip landmarks, while dot markers (blue) represent those from x-

coordinates. The x-coordinates (blue) are generally concentrated in the 0.10–0.15 MAPE range, while y-coordinates 

(orange) are scattered in the 0.20–0.30 range. This suggests that the coordinate type (x or y) is a determining factor in the 

obtained values. 

 

Table 2. MAPE Statistics by Coordinate Type 

Coord. Type Min Max Mean Median 

x 0.10 0.13 0.11 0.11 

y 0.19 0.30 0.24 0.24 

 

Table 2 presents the basic statistics obtained by considering the best MAPE values for x and y coordinates. The MAPE 

average for x-coordinates is 0.113807, with a median of 0.112231, while for y-coordinates, these values are 0.24 and 0.24, 

respectively. The minimum and maximum values also show that y-coordinates are distributed over a wider range (0.19–

0.30) compared to x-coordinates, suggesting greater variation in y-series and thus greater difficulty in prediction.  

Table 3. Top 10% of Coordinates with the Lowest MAPE Values and ARIMA Parameter Values 

Coordinate p value d value q value MAPE Score 

178_x 5 0 1 0.0994 

81_x 5 0 1 0.1017 

87_x 5 0 1 0.1024 

402_x 5 0 3 0.1030 

181_x 9 0 1 0.1032 

311_x 3 0 2 0.1038 

88_x 5 0 1 0.1050 

317_x 6 0 3 0.1051 

* MAPE values were rounded to four decimal places to enhance numerical clarity across coordinates. 
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Table 3 lists the p, d, q values used in the ARIMA method and the corresponding MAPE values for the top 10% of 

coordinate series with the lowest MAPE values. The first row indicates that for the time series of the x-coordinate of lip 

landmark 178, applying the ARIMA method with p=5, d=0, and q=1 resulted in a MAPE value of 0.0994. 

Table 4. Top 10% of Coordinates with the Highest MAPE Values and ARIMA Parameter Values 

Coordinate p value d value q value MAPE Score 

17_y 7 0 2 0.3002 

317_y 1 0 3 0.2987 

14_y 1 0 3 0.2983 

87_y 1 0 3 0.2925 

314_y 2 0 3 0.2917 

84_y 7 0 2 0.2871 

13_y 9 0 1 0.2851 

402_y 2 0 3 0.2808 

* MAPE values were rounded to four decimal places to enhance numerical clarity across coordinates. 

 

Table 4 shows the highest MAPE values (the top 10% of the 8-coordinate series), ranging from 0.3002 for 17_y to 0.2808 

for 402_y. All series in the table consist of y-coordinates of the landmarks. The ARIMA parameters are generally observed 

to be p=1 or p=2, q=3. This indicates that the modeling challenges for y-coordinates are exacerbated with certain 

parameter combinations. 

Table 5. Top 5 Most Successful ARIMA Parameter Combinations 

Count p value d value q value 

8 5 0 1 

7 7 0 2 

6 6 0 1 

6 8 0 3 

6 4 0 2 

 

Table 5 presents the top five ARIMA parameter combinations based on the frequency of their use in achieving the best 

MAPE values for the 80 different series. The table shows that the combination p=5, d=0, q=1, used 8 times, ranks first. 

Additionally, the fact that the d value is 0 in the combinations listed in the table suggests that differencing is generally 

unnecessary. 
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Figure 2. MAPE Heatmap for the x-Coordinate of Landmark 178 (d=0) 

 

Figure 2 displays the MAPE heatmap for the x-coordinate of landmark 178, which achieved the best result among the 

MAPE values obtained with the ARIMA model. With d=0, the lowest MAPE (approximately 0.0994) was obtained with 

the combination p=5, q=1, while the highest MAPE (1.4360) was obtained with p=0, q=0. 

For the application of the SARIMA method to the 80 different time series, hyperparameter ranges were set as p (0–9), d 

(0–1), q (0–3), P (0–1), D (0–1), Q (0–1), and s (25), resulting in 640 combinations per series and a total of 51,200 evaluations. 

 

Figure 3. Best MAPE Value for Each Series 

Figure 3 shows the best MAPE values for each series according to coordinate numbers. The x-coordinates (blue dots) are 

generally concentrated in the 0.133–0.166 MAPE range, while y-coordinates (orange crosses) are distributed in the 0.220–
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0.325 range. This indicates that, similar to the ARIMA results, the coordinate type (x or y) is a determining factor in MAPE 

values. The lower error rates for x-coordinates suggest that these series are easier to predict compared to y-coordinates. 

Table 6. MAPE Statistics by Coordinate Type 

Coord. Type Min Max Mean Median 

x 0.13 0.17 0.15 0.15 

y 0.22 0.32 0.27 0.26 

Table 6 shows that for x-coordinates, MAPE statistics are min 0.13, max 0.17, mean 0.15, and median 0.15; for y-

coordinates, they are min 0.22, max 0.32, mean 0.27, and median 0.26. These values indicate that y-coordinates have 

approximately 80% higher average error rates and are distributed over a wider range. Overall, x-coordinates exhibit more 

consistent and lower error rates, while y-coordinates are more variable and challenging to predict. 

Table 7. Top 10% of Series with the Lowest MAPE Values 

Coordinate p value d value q value P value D value Q value S value MAPE Score 

178_x 1 0 3 0 0 1 25 0.1331 

81_x 1 0 3 1 0 0 25 0.1356 

87_x 1 0 3 0 0 0 25 0.1359 

402_x 1 0 3 0 0 0 25 0.1365 

181_x 1 0 3 0 0 1 25 0.1366 

311_x 1 0 3 0 0 0 25 0.1376 

82_x 1 0 3 0 0 0 25 0.1377 

317_x 1 0 3 0 0 0 25 0.1381 

* MAPE values were rounded to four decimal places to enhance numerical clarity across coordinates. 

 

Table 7 presents the combination values for the series in the top 10% with the lowest MAPE values. It is observed that all 

series in the top 10% percentile consist of X series. 

Table 8. Top 10% of Series with the Highest MAPE Values 

Coordinate p value d value q value P value D value Q value S value MAPE Score 

17_y 0 1 3 0 0 0 25 0.3248 

317_y 0 1 3 0 0 0 25 0.3232 

14_y 0 1 3 0 0 0 25 0.3229 

87_y 0 1 3 0 0 0 25 0.3172 

314_y 0 1 3 0 0 0 25 0.3172 

84_y 0 1 3 0 0 0 25 0.3124 

13_y 0 1 3 0 0 0 25 0.3122 

402_y 0 1 3 0 0 0 25 0.3061 

* MAPE values were rounded to four decimal places to enhance numerical clarity across coordinates. 

 

Table 8 shows the series in the worst 10% of the 80 different series based on the best MAPE values obtained using the 

SARIMA model, along with their parameter values and MAPE scores. The dominance of y-coordinates in the highest 

MAPE values confirms the modeling challenges for these series. The combinations p=0 and q=3 is frequently observed, 

but d=1 appears to increase the error rate in some cases. 
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Figure 4. MAPE Heatmap for the x-Coordinate of Landmark 178 (d=0, s=25) 

 

Figure 4 presents the MAPE heatmap for the x-coordinate of landmark 178, which achieved the best MAPE value among 

the 80-coordinate series when evaluated with the SARIMA method. With d=0 and s=25, the lowest MAPE (approximately 

0.0994) was obtained with p=5, q=1, while the highest MAPE (1.4360) was obtained with p=0, q=0. With d=0 fixed, the 

effect of p and q values on MAPE is clearly demonstrated. 

The most successful SARIMA parameter combinations and their frequency values are shown in Table 9. The prevalence 

of d=0 and q=3 combinations suggests that differencing is generally unnecessary, and a high moving average 

component is effective. The concentration of seasonal parameters (P, Q) at low values may indicate a limited seasonality 

effect. 

Table 9. Top 5 Most Successful SARIMA Parameter Combinations 

p value d value q value P value D value Q value S value Freq. 

0 1 3 0 0 0 25 37 

1 0 3 0 0 0 25 27 

0 1 3 0 0 1 25 5 

0 1 3 1 0 0 25 4 

1 0 3 0 0 1 25 3 

 

Table 1-A (see appendix) lists the best and worst MAPE values obtained with both ARIMA and SARIMA models for each 

coordinate, along with the parameter combinations used to achieve these values. Generally, the best ARIMA 

combinations, typically 5, 0, 1 or similar parameter settings, yield MAPE values in the 0.09–0.13 range, while the best 

SARIMA combinations, mostly 1, 0, 3, 0, 0, 0, 25 or 1, 0, 3, 0, 0, 1, 25 produce MAPE values in the 0.13–0.32 range. 

Additionally, higher MAPE values are generally observed for y-coordinates. Among the worst-performing models, certain 

SARIMA combinations (e.g., 6, 1, 3, 0, 0, 1, 25) exhibit extremely high error rates (MAPE values exceeding 3000). 

5. Discussion and Future Works 
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In this study, time series data derived from x and y coordinates of 40 lip landmarks, extracted using MediaPipe Face Mesh 

technology, were modeled using ARIMA and SARIMA methods, with forecasting performance evaluated via MAPE 

values. The results indicate that x-coordinates generally exhibit lower error rates compared to y-coordinates. This suggests 

that horizontal (x-axis) movements are temporally more regular and predictable, while vertical (y-axis) movements display 

greater variability. The ARIMA model, with its simpler structure and fewer parameter requirements, produced successful 

results for many coordinates. Notably, parameter combinations such as p=5, d=0, q=1, with minimal differencing (d=0), 

yielded low MAPE values. The SARIMA model, incorporating seasonal components, resulted in a broader error range for 

some series, indicating limited seasonality in lip coordinate data. 

For future work, incorporating multivariate time series approaches (e.g., VAR, VARMA, VARMAX) could more effectively 

capture dependencies and simultaneous movements among lip landmarks, potentially yielding better results. 

Additionally, comparing machine learning and deep learning-based forecasting models (e.g., LSTM, GRU) with traditional 

methods is recommended as a meaningful direction for future research. 
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APPENDIX 

Table 1-A. Best and worst MAPE values obtained with ARIMA and SARIMA methods 

Coord. 

ARIMA SARIMA 

BEST WORST BEST WORST 

(p, d, q) MAPE MAPE (p, d, q, P, D, Q, s) MAPE (p, d, q, P, D, Q, s) MAPE 

178_x 5,0,1 0.09937608 1.435977992 1,0,3,0,0,1,25 0.133050513 6,1,3,0,0,1,25 3133.920292 

81_x 5,0,1 0.10168164 1.447421532 1,0,3,1,0,0,25 0.135553991 0,0,0,0,0,0,25 100 

87_x 5,0,1 0.10237386 1.266574391 1,0,3,0,0,0,25 0.135892189 0,0,0,0,0,0,25 100 

402_x 5,0,3 0.10296468 0.828397457 1,0,3,0,0,0,25 0.136452465 6,1,3,0,1,0,25 161.8177657 

181_x 9,0,1 0.10321259 1.528204297 1,0,3,0,0,1,25 0.136598705 0,0,0,0,0,0,25 100 

311_x 3,0,2 0.10375558 0.829421795 1,0,3,0,0,0,25 0.137593851 0,0,0,0,0,0,25 100 

82_x 8,0,3 0.10522601 1.270162108 1,0,3,0,0,0,25 0.137692494 6,1,3,0,1,0,25 331.1700564 

317_x 6,0,3 0.10511561 0.923345096 1,0,3,0,0,0,25 0.138056544 6,1,3,0,1,0,25 138.279693 

312_x 3,0,2 0.10599842 0.921313308 1,0,3,0,0,0,25 0.138771163 0,0,0,0,0,0,25 100 

88_x 5,0,1 0.10497560 1.592677386 0,1,3,1,0,0,25 0.139040264 6,0,3,0,1,0,25 359.5971969 

84_x 5,0,1 0.10545934 1.315978034 1,0,3,0,0,0,25 0.139583 0,0,0,0,0,0,25 100 

91_x 5,0,3 0.10558966 1.711664151 1,0,3,0,0,0,25 0.139723399 4,0,2,1,1,0,25 18412.73995 

80_x 6,0,1 0.10584419 1.605907296 1,0,3,1,0,0,25 0.140368225 7,1,3,0,1,0,25 1007.48025 

318_x 9,0,2 0.10823836 0.787790034 1,0,3,0,0,0,25 0.141668595 0,0,0,0,0,0,25 100 

14_x 8,0,3 0.11058498 1.087601349 1,0,3,0,0,0,25 0.142316379 6,1,3,0,1,0,25 194.285881 

310_x 9,0,2 0.10953666 0.792216458 1,0,3,0,0,0,25 0.142806091 0,0,0,0,0,0,25 100 

13_x 8,0,3 0.11231879 1.089366615 1,0,3,0,0,0,25 0.144568805 4,1,2,1,1,1,25 3136.260776 

405_x 3,0,2 0.11209947 0.781406271 0,1,3,0,0,1,25 0.145260372 6,1,3,0,1,0,25 193.120676 

314_x 6,0,3 0.11210699 0.896873503 1,0,3,0,0,1,25 0.145364045 6,1,3,0,1,0,25 863.2600201 

17_x 5,0,1 0.11146452 1.092059035 1,0,3,0,0,0,25 0.145661558 6,1,3,0,1,0,25 669.6962154 

40_x 5,0,1 0.11214378 1.738231615 0,1,3,1,0,0,25 0.146025867 0,0,0,0,0,0,25 100 

270_x 8,0,2 0.11321370 0.747115433 1,0,3,0,0,0,25 0.146750405 0,0,0,0,0,0,25 100 

321_x 7,0,2 0.11395582 0.739733634 0,1,3,0,0,1,25 0.14715464 0,0,0,0,0,0,25 100 

269_x 3,0,2 0.11591097 0.785626852 1,0,3,0,0,0,25 0.148525467 0,0,0,0,0,0,25 100 

39_x 6,0,1 0.11595688 1.572304405 1,0,3,0,0,0,25 0.149286127 0,0,0,0,0,0,25 100 

95_x 7,0,1 0.11527360 1.720214371 0,1,3,0,0,0,25 0.149770269 0,0,0,0,0,0,25 100 

146_x 4,0,2 0.11580781 1.852531197 1,0,3,0,0,0,25 0.150677859 0,0,0,0,0,0,25 100 

191_x 3,0,3 0.11677169 1.735104706 0,1,3,0,0,0,25 0.151879802 0,0,0,0,0,0,25 100 

324_x 3,0,3 0.11807483 0.781246805 1,0,3,0,0,0,25 0.151995233 0,0,0,0,0,0,25 100 

185_x 3,0,2 0.11825533 1.866160322 0,1,3,1,0,0,25 0.153164012 6,0,3,1,0,1,25 19807.02369 

409_x 3,0,3 0.12004112 0.757987122 1,0,3,0,0,0,25 0.15392803 4,0,2,1,1,1,25 170.2169865 

415_x 6,0,3 0.12085731 0.78717809 1,0,3,0,0,0,25 0.154813162 4,0,2,0,1,0,25 8528.834526 

375_x 7,0,3 0.12099382 0.759801628 0,1,3,0,0,0,25 0.155368895 4,0,2,0,1,0,25 321.3556024 

267_x 3,0,2 0.12671326 0.913918311 1,0,3,0,0,0,25 0.158385372 0,0,0,0,0,0,25 100 

37_x 6,0,1 0.12614272 1.342226212 1,0,3,0,0,0,25 0.159250053 0,0,0,0,0,0,25 100 

0_x 6,0,1 0.13160650 1.113006584 1,0,3,0,0,0,25 0.163629547 0,0,0,0,0,0,25 100 

78_x 8,0,2 0.12947171 1.887034148 1,0,3,0,0,0,25 0.163796981 0,0,0,0,0,0,25 100 

61_x 4,0,2 0.13052547 1.978311226 1,0,3,0,0,0,25 0.165201677 6,0,3,1,0,1,25 166.0745253 

308_x 6,0,3 0.13079112 0.800457802 1,0,3,0,0,0,25 0.165458509 0,0,0,0,0,0,25 100 

291_x 3,0,3 0.13185803 0.805768958 1,0,3,0,0,0,25 0.166597358 0,0,0,0,0,0,25 100 
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409_y 4,0,3 0.19317847 10.79446741 0,1,3,0,0,0,25 0.220444474 4,0,2,0,1,0,25 1334.940218 

185_y 7,0,3 0.19516749 10.82031819 0,1,3,0,0,0,25 0.221582356 0,0,0,0,0,0,25 100 

415_y 4,0,3 0.19530656 10.84401865 0,1,3,0,0,0,25 0.222381734 0,0,0,0,0,0,25 100 

191_y 9,0,2 0.19591937 10.86357107 0,1,3,0,0,0,25 0.222718994 6,1,3,1,0,1,25 185.307472 

270_y 6,0,2 0.19766462 10.89146523 0,1,3,0,0,0,25 0.224439292 4,1,2,0,1,0,25 137.2688519 

78_y 6,0,2 0.19911389 10.77444918 0,1,3,0,0,0,25 0.225715871 6,1,3,0,1,0,25 179.4914227 

308_y 4,0,3 0.20350221 10.74694029 0,1,3,0,0,0,25 0.230164229 4,0,2,0,1,0,25 386.3229999 

40_y 4,0,2 0.20391242 10.90726028 0,1,3,0,0,0,25 0.230396475 0,0,0,0,0,0,25 100 

146_y 6,0,1 0.20665702 10.79970753 0,1,3,0,0,0,25 0.232837765 6,1,3,0,1,0,25 189.7121921 

61_y 9,0,2 0.20864385 10.7357768 0,1,3,0,0,0,25 0.235220248 0,0,0,0,0,0,25 100 

95_y 5,0,1 0.21264610 10.82086875 0,1,3,0,0,1,25 0.23879431 6,1,3,0,1,0,25 288.5158727 

375_y 8,0,2 0.21452793 10.79135543 0,1,3,0,0,0,25 0.240945359 6,0,3,0,0,1,25 2740891.654 

291_y 7,0,0 0.21520494 10.70296935 0,1,3,0,0,0,25 0.242001198 4,0,2,0,1,1,25 9308.670746 

310_y 9,0,3 0.21547824 10.93042232 0,1,3,0,0,0,25 0.242220283 0,0,0,0,0,0,25 100 

80_y 4,0,2 0.21826290 10.94321673 0,1,3,0,0,0,25 0.244380664 4,1,2,0,0,1,25 1238.126899 

324_y 4,0,3 0.21878916 10.81026512 0,1,3,0,0,0,25 0.245031666 0,0,0,0,0,0,25 100 

269_y 7,0,2 0.22037003 10.98728604 0,1,3,0,0,0,25 0.247175417 0,0,0,0,0,0,25 100 

91_y 6,0,1 0.22436393 10.87953525 0,1,3,0,0,0,25 0.250905597 0,0,0,0,0,0,25 100 

39_y 7,0,2 0.22912624 10.99522356 0,1,3,0,0,0,25 0.255641984 6,1,3,0,0,0,25 124.8762493 

321_y 5,0,0 0.23368296 10.8963746 0,1,3,0,0,0,25 0.259719968 0,0,0,0,0,0,25 100 

88_y 8,0,3 0.24118974 10.86410158 0,1,3,0,0,0,25 0.267244044 0,0,0,0,0,0,25 100 

311_y 9,0,3 0.24671998 11.01742902 0,1,3,0,0,0,25 0.273314605 0,0,0,0,0,0,25 100 

318_y 6,0,2 0.24908672 10.86429984 0,1,3,0,0,0,25 0.274936472 0,0,0,0,0,0,25 100 

81_y 4,0,2 0.25027510 11.02458964 0,1,3,0,0,0,25 0.276241699 0,0,0,0,0,0,25 100 

181_y 7,0,2 0.25539508 10.97539704 0,1,3,0,0,0,25 0.281352583 6,0,3,1,0,1,25 5099.08556 

267_y 7,0,2 0.25660685 11.06260426 0,1,3,0,0,1,25 0.282948285 0,0,0,0,0,0,25 100 

37_y 8,0,3 0.26097292 11.06809729 0,1,3,0,0,1,25 0.287303265 0,0,0,0,0,0,25 100 

405_y 9,0,1 0.26409151 11.00209626 0,1,3,0,0,0,25 0.289306693 0,0,0,0,0,0,25 100 

178_y 8,0,3 0.27193200 10.91805419 0,1,3,0,0,0,25 0.297232966 0,0,0,0,0,0,25 100 

0_y 8,0,1 0.27273381 11.1160408 0,1,3,1,0,0,25 0.299110378 0,0,0,0,0,0,25 100 

312_y 9,0,1 0.27399102 11.08319996 1,1,3,0,0,1,25 0.301104343 0,0,0,0,0,0,25 100 

82_y 4,0,2 0.27683224 11.08541415 1,1,3,0,0,1,25 0.302656093 0,0,0,0,0,0,25 100 

402_y 2,0,3 0.28080079 10.92425628 0,1,3,0,0,0,25 0.30609919 0,0,0,0,0,0,25 100 

13_y 9,0,1 0.28511938 11.11326614 0,1,3,0,0,0,25 0.31219073 0,0,0,0,0,0,25 100 

84_y 7,0,2 0.28706051 11.04852261 0,1,3,0,0,0,25 0.312403903 6,0,3,0,0,1,25 121349.6688 

314_y 2,0,3 0.29171824 11.06421396 0,1,3,0,0,0,25 0.317171768 0,0,0,0,0,0,25 100 

87_y 1,0,3 0.29252835 10.96507303 0,1,3,0,0,0,25 0.317228345 6,1,3,1,0,1,25 140.527565 

14_y 1,0,3 0.29830442 10.99049135 0,1,3,0,0,0,25 0.322901189 0,0,0,0,0,0,25 100 

317_y 1,0,3 0.29866457 10.9702455 0,1,3,0,0,0,25 0.323231939 0,0,0,0,0,0,25 100 

17_y 7,0,2 0.30015594 11.08009806 0,1,3,0,0,0,25 0.324837695 6,0,3,0,0,1,25 951.9562228 

 


